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Abstract

In this paper we formulate and prove a general theorem of stability of exactness
properties under the pro-completion, which uni�es several such theorems in the liter-
ature and gives many more. The theorem depends on a formal approach to exactness
properties proposed in this paper, which is based on the theory of sketches. Our
stability theorem has applications in proving theorems that establish links between
exactness properties, as well as in establishing embedding (representation) theorems
for classes of categories de�ned by exactness properties.
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Introduction

The construction of pro-completion of a category is well known in mathematics. For
instance, the pro-completion of the category of �nite groups is the category of pro�nite
groups, the pro-completion of the category of �nite sets is the category of pro�nite spaces,
and so on. We address the following question: which properties of the given category (and
more generally, of an internal structure in the category) carry over to its pro-completion?

If C is a small �nitely complete category, its pro-completion is the same as its free
co�ltered limit completion, which is given by the restricted Yoneda embedding C ↪→
Lex(C,Set)op, where Lex(C,Set) is the category of �nite limit preserving functors from
C to Set (see [5, 40]). In the literature, many so-called `exactness properties' have been
shown to be stable under this construction: if C satis�es the given property, so does
Lex(C,Set)op. Among examples of such properties are the following (in each case, the
cited reference is where the corresponding `stability' result was �rst established): being
regular [6], coregular [35], additive [36], abelian [36], exact Mal'tsev with pushouts [11],
coregular co-Mal'tsev [46], coextensive with pushouts [30], and extensive [30]. We prove
in this paper a general stability theorem, which includes all of the above examples and
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establishes stability of other fundamental exactness properties, such as being semi-abelian,
regular Mal'tsev, coherent with �nite coproducts, and many more. In some sense, our
approach to proving the general stability theorem is analogous to the approach used in the
particular cases mentioned above. The generality brings in heavy technicalities; these we
have tackled using 2-categorical calculus of natural transformations. As it can be expected,
we use a generalization of the set-based case of a lemma from [35] called the `uniformity
lemma' (see also Lemma 5.1 in [74]); its detailed proof forms, in fact, a substantial part
of the proof of our general stability theorem. And of course, we rely on classical results
about pro-completion found in [5, 40].

In order to formulate a general stability theorem, �rst we had to formalize the notion
of an exactness property. Although the study of particular exactness properties is one of
the main research directions in category theory, little has been done in terms of developing
a general theory of exactness properties � a theory that would be in similar relation
to investigation of categories de�ned by particular exactness properties as, say, universal
algebra is to investigation of various concrete algebraic structures. The recent work [42]
develops a uni�ed approach to a certain type of exactness properties relevant mostly in
logic and geometry. In [62, 63, 64], �rst steps towards a uni�ed approach to `algebraic'
exactness properties were made (see also [65, 57]). The present work is a �rst step in
studying exactness properties of both of these two types simultaneously, although our
notion of an exactness property also has some limitations. Furthermore, we only take the
theory as far as it is required for formulating and proving the stability theorem. A few
topics for further investigation in the theory of exactness properties are suggested in the
last section of the paper.

Our approach to formalizing the de�nition of an exactness property builds on the theory
of sketches due to Ehresmann [37]. This is not surprising since, intuitively, an exactness
property is a property of the behaviour of limits and colimits, whereas a sketch is the
formal data of some limits and colimits. The key ingredient in our approach is the notion
of an `exactness sequent'. It is a sequence of sketch inclusions

X α // A β
// B

which we abbreviate as α ` β to allude to its logical interpretation. Given a model F of
the sketch X in a category C, we de�ne a `veri�cation' of α ` β to be a map which assigns
to each extension G of F along α an extension of G along β. Most exactness properties
of a category C can be formalized as existence of veri�cations for sets of sequents, all of
which start with the empty sketch X . Thus, an exactness property of a category states
that any A-structure in the category admits a β-extension. For our theorem, we want
veri�cations to be functorial, which is indeed the case in the main examples. When X is
not the empty sketch, we get what can be seen as an exactness property of an internal
structure in a category. This includes examples such as an internal monoid being an
internal group, a morphism being the truth morphism for a subobject classi�er, a split
extension being a split-extension classi�er in the sense of [10], and others. Our approach
to exactness properties does not cover all properties of a category that is of interest. It
can rather be thought of as formalization of the so-called `�rst-order' exactness properties.
An example of a `higher-order' exactness property would be the property of existence of
enough projectives, whereas for an object P to be a projective object would be a �rst-order
exactness property of P (see the last section of the paper for further remarks about the
order of exactness properties). According to our stability theorem, not all but only certain
�rst-order exactness properties are stable under the pro-completion. A counterexample is
given by the exactness property of a morphism to be the truth morphism for a subobject
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classi�er. Another counterexample is for a category to be exact in the sense of [7]. We thus
show that, under the conditions of our stability theorem, given a functorial veri�cation of
α ` β for an X -structure F in C, there exists a functorial veri�cation of α ` β for the image
yF of F under the (restricted) Yoneda embedding y : C ↪→ Lex(C,Set)op. Moreover, the
functorial veri�cation of α ` β for yF can be chosen so that it is `coherent' with (agrees
with) the functorial veri�cation of α ` β for F .

As far as applications of the stability theorem are concerned, we have the following:

� The stability theorem allows to apply categorical proofs involving colimits to cat-
egories which do not necessarily have colimits. This has been explained and used
in [54, 59]. Roughly speaking, it goes as follows. Consider two exactness properties
P and Q expressed in terms of �nite limits. Suppose one has a proof that the impli-
cation P ⇒ Q holds for any �nitely complete and cocomplete category. An obvious
question then arises: does this implication hold for any �nitely complete category?
If one can prove that the exactness property P is stable under the pro-completion,
we can proceed as follows: let C be a �nitely complete category satisfying P . By the
axiom of universes, one can assume it is small. Then, its free co�ltered limit com-
pletion Lex(C,Set)op satis�es P . Since Lex(C,Set)op is complete and cocomplete,
it also satis�es Q. And since the Yoneda embedding C ↪→ Lex(C,Set)op preserves
�nite limits and all colimits, and re�ects isomorphisms, one can usually show that
C also satis�es Q. It is worth mentioning that the example given in [59] is quite
involved and no direct proof of it has been found for now.

� The stability theorem opens a way to new embedding theorems in categorical alge-
bra. Barr proved and used in [6] a particular instance of the stability theorem for
the property of being a regular category. This was a crucial step in proving his em-
bedding theorem for regular categories. In a similar way, while this paper was under
preparation, other particular instances of our stability theorem, together with the
theory of `approximate operations' originating in [18, 65], enabled the �rst author to
establish embedding theorems for other classes of categories such as regular Mal'tsev
categories in [54, 55, 57]. These theorems often provide a better technique for proving
theorems in general categories than the one described above.

Finally, let us remark that applying our stability theorem to a particular exactness
property is not always a straightforward task. The obvious presentation of the exactness
property in terms of a set of sequents may not give sequents that ful�l the requirements in
our theorem. Nevertheless, sometimes it becomes possible to appropriately reformulate the
exactness property. When even that is not achievable, it may still be possible to slightly
strengthen the property with other exactness properties and then give it a representation as
a set of sequents admissible for the theorem. For instance, we do not know if our theorem
can be applied to (�nitely complete) Mal'tsev categories [29], while it is applicable to
regular Mal'tsev categories. This and some other examples of this nature are detailed at
the end of the �rst section of the paper.

Remark. Earlier unpublished draft versions of this paper have been cited as `Uncondi-
tional exactness properties' in [54, 55] and as `Functorial exactness properties' in [59, 57].
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1 A formal approach to exactness properties

1.1 Commutativity and convergence conditions

Let G be a graph, i.e., a diagram d, c : E ⇒ V in Set, the category of sets. By a path in G,
we mean, as usual, an alternating sequence (A0, f1, A1, . . . , fn, An) of vertices and arrows
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with n > 0, d(fi) = Ai−1 and c(fi) = Ai for each i ∈ {1, . . . , n}. As in [8], a commutativity
condition in G is a pair of paths

((A0, f1, A1, . . . , fn, An), (B0, g1, B1, . . . , gm, Bm))

in G such that A0 = B0 and An = Bm. We will represent it by

fn · · · f1 = gm · · · g1

or by
fn · · · f1 = 1B0

ifm = 0 (and similarly if n = 0). A �nite diagram in G is given by a �nite graphH together
with a morphism of graphsD : H → G. A �nite limit condition (respectively, a �nite colimit
condition) in G is an equivalence class of 4-tuples (H, D,C, (cH)H∈H) where D : H → G
is a �nite diagram, C is an object in G and for each object H in H, cH : C → D(H)
(respectively, cH : D(H) → C) is an arrow in G. Two such 4-tuples (H, D,C, (cH)H∈H)
and (H′, D′, C ′, (c′H′)H′∈H′) are considered to be equivalent if C = C ′ and if there exists
an isomorphism of graphs I : H → H′ such that D′I = D and cH = c′I(H) for any H ∈ H.
Such a condition [(H, D,C, (cH)H∈H)] will be represented by

(C, (cH)H) = lim(H, D) (respectively, by (C, (cH)H) = colim(H, D)).

Finite limit conditions and �nite colimit conditions are called convergence conditions.

1.2 Sketches

The theory of sketches is due to Ehresmann [37]. Our approach to sketches di�ers slightly
from his, but only at the level of presentation. We de�ne an exactness sketch (or simply
a sketch) as a �nite graph equipped with a set of commutativity conditions and a set of
convergence conditions. A morphism of sketches is a morphism µ : G → G′ of underlying
graphs of sketches which carries each commutativity condition on G to a commutativity
condition on G′ and each convergence condition on G to a convergence condition on G′.
With the obvious way of composing morphisms of sketches, we obtain the category Sk of
sketches. The forgetful functor

G : Sk→ FGraph,

which maps each sketch to its underlying graph in the category FGraph of �nite graphs,
is a `topological functor' (see e.g. [22]), that is, both G and G op are �brations [50] whose
�bres are complete lattices.

A subsketch of a sketch B is a subgraph A of the underlying graph of B, equipped
with a sketch structure that turns the inclusion of graphs A → B into a sketch morphism.
We will call such morphisms subsketch inclusions. By a regular subsketch of a sketch we
mean a subsketch for which the corresponding subsketch inclusion β : A → B is a regular
monomorphism in Sk. It is easy to see that this is equivalent to β being a cartesian
morphism for the functor G (in simpler terms, A inherits all conditions of B that can be
expressed in A).
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1.3 Exactness structures

Given a sketch X and a category C, an exactness structure of type X (or simply, an X -
structure) in C is a morphism F : X → C of graphs which carries each commutativity
condition of X to an actual commutative diagram in C, and each �nite limit/colimit
condition of X to an actual limit/colimit in C. In a given category C, structures of the
same type X and natural transformations between them form a category, under the usual
composition of natural transformations. We denote this category by XC. Every morphism
ϕ : A → B of sketches gives rise to a functor

ϕC : BC→ AC

of `composition with ϕ', de�ned by the mapping F 7→ F ◦ ϕ for structures and a similar
one for their transformations. For an A-structure G in C, we write BϕGC to denote the
�bre of ϕC at G.

1.4 Exactness sequents

The notion of an `exactness sequent' introduced here is new and it allows a formal approach
to `(�nitary) exactness properties'. For a sketch X , an exactness sequent of type X (or
simply, an X -sequent) is a sequence

X α // A β
// B (1)

of subsketch inclusions, abbreviated as

α ` β.

Let F be an X -structure in a category C. A veri�cation of an X -sequent α ` β for F is a
right inverse of the object function of the restriction

βαF : BβαF C→ AαFC

of the functor βC : BC→ AC. An actual right inverse functor of the same functor is called
a functorial veri�cation of α ` β for F .

We will sometimes write `α `F β' as an abbreviation of the statement `there exists
a veri�cation of α ` β for F ' and `α `F β functorially' for `there exists a functorial
veri�cation of α ` β for F '.

If X = ∅ is the empty sketch and C a category, there is a unique ∅-structure in C. A
(functorial) veri�cation of an ∅-sequent α ` β for this unique ∅-structure F will be simply
called a (functorial) veri�cation of α ` β for C. We write in this case α `C β instead of
α `F β.

Notice that in general, an exactness sequent may have several (functorial) veri�cations
for the same X -structure. We will describe in Subsection 1.7 a particular case of exactness
sequents for which this cannot happen, and moreover, for which veri�cations are always
extendable to functorial veri�cations. In this case, existence of a (functorial) veri�cation
becomes a property. Classical exactness properties fall under this case with further X = ∅.
Note that by allowing non-empty X , we are generalizing exactness properties to internal
structures in a category. See Subsection 1.9 for examples.
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1.5 Equivalent conditions for functorial veri�cation

Let us now prove two easy lemmas that will be used later.

Lemma 1.1. Let β : A → B be a morphism of sketches which is injective on objects.
Given a category C and an isomorphism i : βC(H)→ G in AC, there exists a B-structure
E ∈ BβGC and an isomorphism j : H → E in BC such that βC(j) = i.

Proof. We denote by β(obA) the image in the set of objects of B of the object function
part of β. Since β is injective on objects, we can de�ne E on objects as

E(B) =

{
G(A), if B = β(A),

H(B), if B /∈ β(obA).

We can also de�ne for an object B in B,

jB =

{
iA, if B = β(A),

1H(B), if B /∈ β(obA).

For an arrow b : B1 → B2 in B, we de�ne E(b) as

E(b) = jB2H(b)j−1B1
.

Then E is a graph morphism E : B → C and jB is an isomorphism natural in B. Since
H is a B-structure and E is naturally isomorphic to it (via j), also E is a B-structure. It
is also clear that βC(j) = i. By the de�nitions of E and j, and by naturality of i, we get
that for any arrow a : A1 → A2 in A, the following diagram commutes:

E(β(A1))
E(β(a))

//

j−1
β(A1)

%%

E(β(A2))

j−1
β(A2)

yy

H(β(A1))

iA1

��

H(β(a))
//

=

H(β(A2))

iA2

��

G(A1)
G(a)

//

=

G(A2)

This shows E(β(a)) = G(a). Thus, E ∈ BβGC and the proof is complete.

Lemma 1.2. An X -sequent α ` β admits a functorial veri�cation for an X -structure F in
a category C if and only if for each G ∈ AαFC there exists HG ∈ BC, which depends on G
functorially (over the category AαFC) and for which there is an isomorphism HG ◦ β ∼= G
natural in G.

Proof. The `only if' part is obvious. For the `if part', let iG denote the isomorphism
HG ◦ β → G for each G ∈ AαFC. Let also jG : HG → E(G) be the isomorphism given by
Lemma 1.1. Finally, for a morphism m : G1 → G2 in AαFC, we set

E(m) = jG2Hm(jG1)−1.
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This de�nes a functor
E : AαFC→ B

βα
F C

which is a right inverse of the functor βαF since βC(jG) = iG for each G ∈ AαFC and iG is
natural in G:

βαF (E(m)) = βC(jG2)βC(Hm)βC(jG1)−1 = iG2βC(Hm)(iG1)−1 = m

for each morphism m : G1 → G2 in AαFC.

1.6 Unconditionality

To each �nite category A we associate a sketch A, called the underlying sketch of A. The
underlying graph of A is the same as the underlying graph of A and the commutativity
conditions are given by

� ((A, f,B, g, C), (A, gf, C)) for any pair of composable arrows f : A→ B and g : B →
C in A;

� ((A, 1A, A), (A)) for any object A in A.

There are no convergence conditions on A.
A subsketch inclusion α : X → A is said to be unconditional of �nite kind if A is

the underlying sketch of a �nite category further equipped with the commutativity and
convergence conditions which already appear in X (and no others). The stability theorem
will concern exactness sequents α ` β where α is unconditional of �nite kind.

1.7 Constructibility

Before giving some concrete examples of exactness sequents, let us consider a particular
case for which functoriality of the right inverse of βαF is a consequence of the fact that βαF
is essentially surjective.

A subsketch inclusion β : A → B is said to be constructible if it is the composite of a
�nite sequence

A // • // • // · · · // B

of subsketch inclusions, where every next subsketch of B is obtained from the previous one
by any one of the following procedures:

� include some commutativity and convergence conditions from B expressed using ob-
jects and arrows which belong to the subsketch;

� include an arrow f from B and a commutativity condition f = gn · · · g1 from B, for
n > 0 and existing arrows g1, . . . , gn in the subsketch;

� include an object C from B, not already in the subsketch, together with the arrows
cH and the condition (C, (cH)H) = lim(H, D) from B, where D is a �nite diagram in
the subsketch;

� include an object C from B, not already in the subsketch, together with the arrows
cH and the condition (C, (cH)H) = colim(H, D) from B, where D is a �nite diagram
in the subsketch;



1. A formal approach to exactness properties 9

� given in the subsketch a condition (C, (cH)H) = lim(H, D), an object X, a family
(xH : X → D(H))H∈H of arrows and commutativity conditions D(h) · xH = xH′ for
each arrow h : H → H ′ in H, include from B an arrow f : X → C and commutativity
conditions cH · f = xH for each object H ∈ H;

� given in the subsketch a condition (C, (cH)H) = colim(H, D), an object X, a family
(xH : D(H)→ X)H∈H of arrows and commutativity conditions xH′ ·D(h) = xH for
each arrow h : H → H ′ in H, include from B an arrow f : C → X and commutativity
conditions f · cH = xH for each object H ∈ H.

Lemma 1.3. For any constructible subsketch inclusion β : A → B and any category C,
the functor βC is full and faithful. Moreover, for any A-structure G in C, if there exists a
B-structure H in C such that βC(H) is isomorphic to G, then the �bre BβGC is non-empty.

Proof. In view of the above de�nition, this reduces to easy veri�cation that the stated
properties hold for any subsketch inclusion β : A → B, where A is a subsketch of B such
that applying one of the above procedures results in B.

In particular, if

X α // A β
// B

is an exactness sequent with β a constructible subsketch inclusion and if F is an X -structure
in a category C, the functor βC : BC→ AC restricts to a full and faithful functor

βαF : BβαF C→ AαFC.

Moreover, F admits a functorial veri�cation of α ` β if and only if βαF is essentially
surjective on objects (and hence an equivalence of categories), proving the following lemma.

Lemma 1.4. Let X α // A β
// B be an exactness sequent such that β is a constructible

subsketch inclusion. For an X -structure F in a category C, the following statements are
equivalent

(i) F admits a functorial veri�cation of α ` β, i.e., α `F β functorially;

(ii) F admits a veri�cation of α ` β, i.e., α `F β;

(iii) for all A-structure G in C such that G ◦ α = F , there exists a B-structure H in C
such that H ◦ β is isomorphic to G.

Moreover, if those conditions hold, there are, up to isomorphisms, exactly one veri�cation
and exactly one functorial veri�cation of α ` β for F .

1.8 Dual sequents

Each sketch Z gives rise to a dual sketch Zop: the underlying graph of Zop is the dual of the
underlying graph of Z, each commutativity condition fn · · · f1 = gm · · · g1 in Z is turned
into a condition fop1 · · · f

op
n = gop1 · · · g

op
m in Zop, each �nite limit condition (C, (cH)H) =

lim(H, D) in Z is turned into a �nite colimit condition (C, (copH )H) = colim(Hop, Dop) in
Zop and vice-versa. As usual, a morphism of sketches µ : V → Z gives rise to a morphism
µop : Vop → Zop between the dual sketches. Similarly, each Z-structure G in a category C
can be turned into a Zop-structure Gop in Cop. This gives an isomorphism of categories
Zop(Cop) ∼= (ZC)op. It is then not hard to see that given an exactness sequent α ` β as



1. A formal approach to exactness properties 10

in (1) and an X -structure F in C, we have α `F β if and only if αop `F op βop, and α `F β
functorially if and only if αop `F op βop functorially. Notice also that a subsketch inclusion
α is unconditional of �nite kind if and only if αop is. Moreover, a subsketch inclusion β is
regular (respectively, constructible) if and only if βop is.

1.9 Concrete examples

The selection of examples of exactness properties included here are for illustration only and
by no means do we provide a comprehensive list of examples. Investigation of exactness
properties is one of the central activities in research in category theory. New exactness
properties have been arising in the literature since the birth of the subject of category theory
in [38]. The �rst exactness properties expressed properties of the modern-day notion of
an abelian category, and go back to [72]. Our list of examples contains a selection from
classical exactness properties to ones arising in recent literature. We do not claim any
priority of these examples over others that have not been mentioned in this paper.

In this section we will show how certain exactness properties can be concretely repre-
sented by exactness sequents α ` β. Unless stated otherwise, in all of these sequents, α
will be unconditional of �nite kind and β will be constructible.

Example 1.5. In this example, we describe an exactness sequent that encodes the property
of a morphism to be an isomorphism. If X is the sketch

A
f
// B

with no conditions, an X -structure in a category C is just a morphism in that category.
Let A be the underlying sketch of the arrow category:

A
f
//1A 88 B 1Bff

Let B be constructed by adding to A the �nite limit condition (A, (f)) = lim(HOb, D
B
Ob)

where HOb is the graph withW as unique object and without any arrows and DB
Ob : HOb →

G (A) is de�ned by DB
Ob(W ) = B. Then, an X -structure F in the category C (i.e., a

morphism F (f) in C) admits a (functorial) veri�cation of α ` β exactly when the cone

F (A)
F (f)

// F (B) is a limit over the single object diagram F (B), that is, when F (f) is an
isomorphism.

Example 1.6. In this example, we describe an exactness sequent that encodes the property
of a morphism to be a monomorphism. The sketches X and A are here as in Example 1.5.
Now, the sketch B is obtained by adding to A the convergence condition (A, (1A, 1A, f)) =

lim(HPb, D
f,f
Pb ) where HPb is the graph

W2

w2

��

W1 w1

//W3

and Df,f
Pb : HPb → G (A) is de�ned via Df,f

Pb (w1) = Df,f
Pb (w2) = f . In this case, an X -

structure F in C (i.e., a morphism F (f) in C) admits a (functorial) veri�cation of α ` β



1. A formal approach to exactness properties 11

if and only if the square

F (A)
1F (A)

//

1F (A)

��

F (A)

F (f)
��

F (A)
F (f)

// F (B)

is a pullback, that is, when the morphism F (f) is a monomorphism.

In the forthcoming examples, we will specify sketches and categories by incomplete
drawings according to the following rules:

� We may omit the identity arrows in the drawings of categories and in the drawings
of graphs that contain underlying graphs of categories as subgraphs.

� We may omit the composite morphisms of morphisms which are already displayed
in the drawings of categories and in the drawings of graphs that contain underlying
graphs of categories as subgraphs.

� We may display the convergence conditions of sketches by listing the (co)limits they
represent. In particular, in a sketch Z with underlying graph G, we will use the usual
abbreviations 1�11 set out below.

� For the abbreviations 6�11, the arrow h will often be omitted in the display of G.

The abbreviations for displaying convergence conditions in a sketch are:

1. `f : A → B represents an isomorphism' means the condition (A, (f)) = lim(HOb, D
B
Ob)

where HOb is the graph with one objectW and no arrows and DB
Ob : HOb → G is de�ned

by DB
Ob(W ) = B.

2. `A represents the terminal object' means the condition (A,∅) = lim(∅, D!) where
D! : ∅→ G is the unique graph morphism from the empty graph ∅ to G.

3. `A represents the initial object' means the condition (A,∅) = colim(∅, D!) where
D! : ∅→ G is as above.

4. `(P, p1, p2) represents the product of A and B' means the condition (P, (p1, p2)) =
lim(HProd, D

A,B
Prod) where HProd is the graph with two objects W1 and W2 and no arrows,

and DA,B
Prod : HProd → G is de�ned by DA,B

Prod(W1) = A and DA,B
Prod(W2) = B.

5. `(C, i1, i2) represents the coproduct of A and B' means the condition (C, (i1, i2)) =
colim(HCoprod, D

A,B
Coprod) where HCoprod = HProd and DA,B

Coprod = DA,B
Prod are as above.

6. `(E, e) represents the equalizer of f and g' means, for some suitable arrow h, the con-

dition (E, (e, h)) = lim(HEq, D
f,g
Eq ) where HEq is the graph

W1

w1 //

w2

//W2

and Df,g
Eq : HEq → G is de�ned via Df,g

Eq (w1) = f and Df,g
Eq (w2) = g.

7. `(Q, q) represents the coequalizer of f and g' means, for some suitable arrow h, the

condition (Q, (h, q)) = colim(HCoeq, D
f,g
Coeq) where HCoeq = HEq and Df,g

Coeq = Df,g
Eq are

as above.
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8. `(P, p1, p2) represents the pullback of f along g' means, for some suitable arrow h, the

condition (P, (p1, p2, h)) = lim(HPb, D
f,g
Pb ) where HPb is the graph

W2

w2

��

W1 w1

//W3

and Df,g
Pb : HPb → G is de�ned via Df,g

Pb (w1) = f and Df,g
Pb (w2) = g.

9. `(Q, q1, q2) represents the pushout of f along g' means, for some suitable arrow h, the

condition (Q, (q1, q2, h)) = colim(HPo, D
f,g
Po ) where HPo is the graph

W3
w2 //

w1

��

W2

W1

and Df,g
Po : HPo → G is de�ned via Df,g

Po (w1) = f and Df,g
Po (w2) = g.

10. `(R, r1, r2) represents the kernel pair of f ' means `(R, r1, r2) represents the pullback of
f along f '.

11. `(Q, q1, q2) represents the cokernel pair of f ' means `(Q, q1, q2) represents the pushout
of f along f '.

Example 1.7. In this example, we describe an exactness sequent that encodes the property
of two objects to have a product. Let X = A be the underlying sketch of the category
with two objects X and Y and no non-identity arrows. Let β be the inclusion of A in the
sketch

P
p1

~~

p2

��

X Y

conditions from A together with:
(P, p1, p2) represents the product of X and Y.

An X -structure is just the data of two objects and it admits a (functorial) veri�cation of
α ` β if and only if their product exists.

Example 1.8. In this example, we describe an exactness sequent that encodes the property
of a category to have all binary products. Let X be the empty sketch and let A and B
be as in the Example 1.7. Then, a category C admits a (functorial) veri�cation of α ` β
exactly when it has all binary products.

The aim of the next example is to warn the reader that, in a convergence condition
(C, (cH)H) = lim(H, D), the arrows cH are not required to be pairwise distinct.

Example 1.9. In this example, we describe an exactness sequent that encodes the property
of an object to have at most one morphism from each object to it. Let X = A be the
underlying sketch of the category with a single object X and no non-identity arrows. Let
β be the inclusion of A in the sketch

P
p
// X

conditions from A together with:
(P, p, p) represents the product of X and X.
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Then, for an X -structure F in a category C (i.e., an object F (X) of C), we have 1X `F β
(functorially) if and only if, for each object A in C, there is at most one morphism A →
F (X).

Example 1.10. In this example, we describe two exactness sequents both of which encode
the property of a binary relation to be re�exive. Let X = A be the underlying sketch of
the category

R
r1 //

r2
// X

equipped with the convergence condition attesting that (R, r1, 1R, r2, 1R) represents the
limit of the outer square in the following diagram.

X R
r1oo

r2

��

R

r1
``

1R

>>

r2
  

1R

~~

R

r1

OO

r2
// X

An X -structure F in a category C is a relation F (R) : F (X) 9 F (X). We can express
the condition that this relation is re�exive as the condition 1X `F β (functorially) for an
exactness sequent 1X ` β where β is the inclusion of A = X in the sketch B given by

R
r1 //

r2
// X

e

__

conditions from A together with:
r1 · e = 1X ,
r2 · e = 1X .

Note that, in contrast with the above examples, β is not here a constructible subsketch
inclusion. However, the existence of a veri�cation is still equivalent to the existence of a
functorial veri�cation and such veri�cations are uniquely determined. Nonetheless, there
is a way of presenting the re�exivity of a relation as the condition 1X `F β (functorially)
for an exactness sequent 1X ` β where β is constructible: Let again A = X be as above
but let now B be the sketch

L

l1
��

l2

  

R
r1 //

r2
// X

conditions from A together with:
(L, l1, l2) represents the equalizer of r1 and r2,
l2 : L→ X represents an isomorphism.

A relation F (R) admits a (functorial) veri�cation of α ` β when the equalizer of F (r1)
and F (r2) exists and is such that F (l2) is an isomorphism. This happens exactly when
F (R) is a re�exive relation.

From now on we will treat only those examples where X = ∅ is the empty sketch.
We recall that a (functorial) veri�cation of an exactness sequent of type ∅ for a category
C is just a (functorial) veri�cation for the unique ∅-structure in C. Since in all these
examples, unless stated otherwise, α is unconditional of �nite kind, instead of describing
the sketch A, we will describe the (unique) �nite category A whose underlying sketch is A.

Example 1.11. We show that the property of a category being regular [7] is equivalent to
the property of admitting (functorial) veri�cations of some exactness sequents (of type ∅)
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α ` β with α being unconditional of �nite kind and β being constructible. With the
exactness sequent represented by

A B

∅ 1 where 1 represents the terminal object,

one describes the property of having a terminal object. The exactness sequent represented
by

A B

Y

g

��

X
f
// Z

P

p1
��

p2
// Y

g

��

X
f
// Z

conditions from A together with:
(P, p1, p2) represents the pullback of f along g,

expresses the property of having pullbacks. It remains to �nd an exactness sequent satisfy-
ing the required properties and describing a property which is equivalent, in the presence
of �nite limits, to the property of having coequalizers of kernel pairs and pullback stable
regular epimorphisms. This can be done via the subsketch inclusion represented below.

A B

Y

g

��

X
f

// Z

P
i′

��

g′

��

S
s1 //

s2
// P ′

>>

p′

g′′

��

Y

g

��

I
i

��

R
r1 //

r2
// X

f
//

p
>>

Z

conditions from A together with:
(R, r1, r2) represents the kernel pair of f,
(I, p) represents the coequalizer of r1 and r2,
i · p = f,
(P, g′, i′) represents the pullback of i along g,
(P ′, g′′, p′) represents the pullback of p along g′,
(S, s1, s2) represents the kernel pair of p

′,
(P, p′) represents the coequalizer of s1 and s2.

We notice that β is not here formally constructible; but adding the (trivial) commutativity
conditions f · r1 = h, f · r2 = h and i · k = h to B (where h : R → Z and k : R → I
are the omitted arrows coming respectively from the conditions `(R, r1, r2) represents the
kernel pair of f ' and `(I, p) represents the coequalizer of r1 and r2') will turn it into a
constructible one.
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Example 1.12. Being a linear category (see e.g. [71]) is also equivalent to the property
of admitting (functorial) veri�cations of some exactness sequents (of type ∅) α ` β with
α being unconditional of �nite kind and β being constructible. For this, we �rst consider
the property of having a zero object, described via the following exactness sequent.

A B
∅ 0 where 0 represents the terminal object, and

0 represents the initial object.

Actually, we just need this property to ensure the category is not empty. In view of
De�nition 1.10.1 in [9], it then remains to consider the exactness sequent displayed below.

A B

X

Y

X
wX

vv
z

��

iX

xx
lX

&&
0

aX

11

aY

--

C
f

// P

pX

ff

pY
xxY

wY

hh

z′

OO

iY

ff

rY

88

conditions from A together with:
0 represents the terminal object,
0 represents the initial object,
z = aY · wX ,
z′ = aX · wY ,
(P, pX , pY ) represents the product of X and Y,
pX · lX = 1X ,
pY · lX = z,
pX · rY = z′,
pY · rY = 1Y ,
(C, iX , iY ) represents the coproduct of X and Y,
f · iX = lX ,
f · iY = rY ,
f : C → P represents an isomorphism.

Other properties of a category can also be expressed as the property of admitting
(functorial) veri�cations of some exactness sequents (of type ∅) α ` β with α being un-
conditional of �nite kind and β being constructible. We give here a (non-exhaustive) list
of such properties:

� having limits of shape A, for a �nite category A,

� having colimits of shape A, for a �nite category A,

� being a groupoid,

� being a preorder,
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� having a zero object,

� being a regular category with (M,X)-closed relations [64], for an extended matrix
(M,X) of terms in the algebraic theory of sets; this includes the examples of

� being an n-permutable category (for a �xed n > 2) [26], and so by taking n = 2,
being a regular Mal'tsev category [28],

� being a regular majority category [52],

� being a regular pointed category with (M,X)-closed relations [64], for an extended
matrix (M,X) of terms in the algebraic theory of pointed sets; this includes the
examples of

� being regular unital [13],

� being regular strongly unital [13],

� being regular subtractive [61],

� being a Barr-exact Mal'tsev category [7, 28],

� being regular protomodular with binary coproducts [12],

� being regular and having involution-rigidness property with binary coproducts [67],

� being weakly Mal'tsev with binary coproducts [76],

� being semi-abelian [60],

� being abelian [73, 23, 49, 72],

� being additive, see e.g. [73],

� being normal [66],

� being semi-abelian with the `Smith is Huq' condition [15],

� being semi-abelian with the `normality of Higgins commutators' condition [32, 34],

� being an algebraically coherent semi-abelian category [33],

� being coherent with �nite coproducts [68, 75],

� being distributive [27],

� being extensive with pullbacks [27].

In view of Subsection 1.8, the dual properties of all these could be added to the list. The
case of being a regular category with (M,X)-closed relations is treated as Example 3.16
in [54]. For the property of being a Barr-exact Mal'tsev category, we use the fact that this
is equivalent to being a regular Mal'tsev category with the additional property that for
each re�exive graph

X
f
//

g
// Y

s

]]
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the factorisation p of f and g through the kernel pair of their coequalizer must be a regular
epimorphism (i.e., the coequalizer of its kernel pair).

Rq

��

r1

��

r2

X

p

OO

f
//

g
// Y

s

^^

q
// // Q

The property involving regular protomodularity is explicitly described just before Proposi-
tion 4.27 in [54]. As remarked there, the assumption of the existence of binary coproducts
can be replaced by the assumption of the existence of pushouts of morphisms along split
monomorphisms. Similarly, we can get the case of involution-rigidness with binary coprod-
ucts by Theorem 3.2 in [67] and the case of weakly Mal'tsev categories with binary coprod-
ucts from its de�nition. For semi-abelian categories, it su�ces to present semi-abelianness
as having a zero object, being a Barr-exact Mal'tsev category and being regular protomod-
ular with binary coproducts. An easy way to describe the abelian case is now to say that
a category is abelian if and only if it is semi-abelian and its dual is also semi-abelian [60]
(see Subsection 1.8). The additive case is clear from Theorem 1.10.14 in [9]. The case
of normal categories follows directly from the de�nition. One could have also included
the property of being a �nitely complete pointed category where every split epimorphism
is normal, a property which is equivalent to normality in the regular pointed context ac-
cording to Theorem 4.0.3 in [19]. The `Smith is Huq' condition follows from Theorem 4.6
in [51] and the `normality of Higgins commutators' condition is evident from its de�nition.
For the example of algebraically coherent semi-abelian categories, one could use Proposi-
tion 3.13 in [33]. The example of being a coherent category with �nite coproducts is easy
to show from the de�nition (see [68] and references therein) once one has remarked that
in a regular category with �nite coproducts, the union of two subobjects s : S � A and
t : T � A is given by the image of the factorisation ( st ) : S+T → A. The distributive case
being obvious, let us �nally discuss the example of extensive categories with pullbacks. By
Proposition 2.2 in [27], a category with pullbacks and binary coproducts is extensive if and
only if for any commutative diagram

A1

f1
��

a1 // A

f

��

A2
a2oo

f2
��

X1 x1
// X1 +X2 X2x2

oo

where the bottom row is a coproduct diagram, the two squares are simultaneously pullbacks
exactly when the top row is a coproduct diagram. In one direction, this means that starting
from fi : Ai → Xi (for i ∈ {1, 2}), we require the square

Ai

fi
��

ai // A1 +A2

f1+f2
��

Xi xi
// X1 +X2

to be a pullback for each i ∈ {1, 2}. The converse implication can be expressed as: given
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three morphisms with the same codomain,

A

f

��

X1 y
// X X2z
oo

considering the pullback of f along the induced morphism ( yz ) : X1 +X2 → X,

P
w //

f ′

��

pb

A

f

��

X1 +X2
( yz )
// X

then the pullbacks of the coproduct injections along f ′ give rise to a coproduct diagram.

P1

f1
��

x′1 //

pb

P

f ′

��

P2
x′2oo

f2
��

pb

X1 x1
// X1 +X2 X2x2

oo

The following is a list of further examples of properties of admitting (functorial) veri-
�cations of some exactness sequents α ` β for which either α is not unconditional of �nite
kind or β is not constructible:

� The axiom of choice on a category C, stating that every epimorphism is a split
epimorphism, can be expressed as a property of the form α `C β where neither α is
unconditional of �nite kind, nor β is constructible.

� For every endomorphism in a category C to be idempotent is an exactness property of
the form α `C β where α is not unconditional of �nite kind, while β is constructible.

� For a commutative algebraic theory T , a T -enrichment of a category C with �nite
products is a functorial veri�cation of an ∅-sequent α ` β for C (see e.g. [39, 62]),
where α is unconditional of �nite kind, but β, in general, is not constructible. These
sequents may admit several functorial veri�cations for the same C, although usually
they are unique.

� Consider a morphism t : 1→ Ω in a category C, where 1 is a terminal object C. The
property for Ω to be a subobject classi�er with t as the truth morphism (see e.g. [68])
can be expressed as the existence of veri�cations of two exactness sequents for the
same structure.

2 The stability theorem

If C is a small �nitely complete category, we denote by Lex(C,Set)op (or by C̃ inter-
changeably, following [6]) the dual of the category of �nite limit preserving functors from
C to Set. We will consider the (restricted) Yoneda embedding

y : C ↪→ Lex(C,Set)op, C 7→ homC(C,−)

which fully embeds C in Lex(C,Set)op. As shown in [5, 40], this embedding is the free
co�ltered limit completion of C. Furthermore, we have:
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Theorem 2.1. [5, 40] For any �nitely complete small category C, we have:

(a) C̃ is complete and cocomplete.

(b) The embedding y : C ↪→ C̃ is fully faithful and thus re�ects isomorphisms.

(c) The embedding y : C ↪→ C̃ preserves (and re�ects) �nite limits and all colimits.

Moreover, viewing the di�erent hom-sets of C as pairwise disjoint sets, we will assume
that y is also injective on objects. More technical properties of y will be recalled in Theo-
rem 3.1. By Theorem 2.1(c), for a small category C with �nite limits, if S is a Z-structure
in C then yS = y ◦ S is a Z-structure in C̃, for any sketch Z. This de�nes a functor

yZ : ZC→ ZC̃.

We are now ready to formulate our `stability theorem':

Theorem 2.2. Consider an exactness sequent X α // A β
// B such that α is uncondi-

tional of �nite kind, and let C be a small �nitely complete category. If there is a functorial
veri�cation of α ` β for an X -structure F in C, then there is also a functorial veri�cation
of α ` β for yF in Lex(C,Set)op. In other words,

α `F β functorially ⇒ α `yF β functorially

for any X -structure F in C.

Let us make explicit that in the case where X = ∅ is the empty sketch, this theorem
shows that the pro-completion Lex(C,Set)op inherits many exactness properties from the
category C. In other words, using the notation for the case X = ∅ from Subsection 1.4,
we immediately get the following corollary.

Corollary 2.3. Consider an ∅-sequent ∅ α // A β
// B such that α is unconditional

of �nite kind, and let C be a small �nitely complete category. If there is a functorial
veri�cation of α ` β for C, then there is also one for Lex(C,Set)op. In other words,

α `C β functorially ⇒ α `Lex(C,Set)op β functorially.

For a small �nitely cocomplete category C, we denote by y′ : C ↪→ Lex(Cop,Set) the
(restricted) Yoneda embedding C 7→ homC(−, C). By applying Theorem 2.2 with the

exactness sequent X op αop
// Aop βop

// Bop , the category Cop and the X op-structure F op

in Cop, we get the following dual formulation of the stability theorem:

Theorem 2.4. Consider an exactness sequent X α // A β
// B such that α is uncondi-

tional of �nite kind, and let C be a small �nitely cocomplete category. If there is a functorial
veri�cation of α ` β for an X -structure F in C, then there is also a functorial veri�cation
of α ` β for y′F in Lex(Cop,Set). In other words,

α `F β functorially ⇒ α `y′F β functorially

for any X -structure F in C.
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Subsection 1.9 provides many examples of exactness properties to which Theorems 2.2
and 2.4 can be applied. As mentioned in the Introduction, several particular instances of
these theorems can already be found in the literature for particular exactness properties
of a category, see [6, 11, 30, 35, 36, 46]. The property of being cartesian closed has also
been proved [36] to transfer from a small �nitely cocomplete category C to Lex(Cop,Set),
but we have not been able to deduce this fact from Theorem 2.4, which perhaps suggests
that our theorem could be further generalized. The property for a morphism t : 1→ Ω to
be the truth morphism representing Ω as a subobject classi�er was claimed in [36] to be
transferred from a regular �nitely cocomplete small category C to Lex(Cop,Set). However,
in [11], it has been shown that this stability result is false. This is not surprising from
the point of view of our stability theorem. The above property for t can be expressed
as the existence of veri�cations of exactness sequents α ` β with α being unconditional
of �nite kind. However, in this case, this is not equivalent to the existence of functorial
veri�cations, since the β's are not all constructible.

As we can see from Subsection 1.9, the pro-completion of any regular subtractive small
category is again a regular subtractive category by Corollary 2.3. Under the axiom of uni-
verses, this resolves positively the open question from [20] whether any regular subtractive
category admits an embedding to one with binary coproducts.

Let C be the full subcategory of Set consisting of subsets of N, the set of natural
numbers. This category is small, �nitely cocomplete and Barr-exact. However, according
to [11, 30], since C is not `pro-exact', the category Lex(Cop,Set) is not Barr-exact. In
view of Theorem 2.4, this shows that being a Barr-exact category cannot be presented as
the property of admitting functorial veri�cations of some exactness sequents α ` β with
every α being unconditional of �nite kind. However, it is not di�cult to see that it can
be written as the property of admitting functorial veri�cations of some exactness sequents
α ` β with constructible β's.

We conclude this section with a remark about the converse of the stability theorem.
Because of the properties of the functor y, we have the implication

α `yF β functorially ⇒ α `F β functorially

at least in the following two cases:

� when α is any subsketch inclusion, β is constructible and C is �nitely cocomplete (in
addition to being small �nitely complete),

� when α is any subsketch inclusion, β is constructible and B does not contain any
colimit condition (and C is small �nitely complete).

Indeed, in those cases, if G is an A-structure in C such that G ◦ α = F , we know that yG
is an A-structure in Lex(Cop,Set) such that (yG) ◦ α = yF . Suppose that α `yF β holds
(functorially). Then there is a B-structure H ′ in Lex(Cop,Set) such that H ′ ◦ β = yG.
Now, in view of the following, we can show by induction that H ′ lies, up to isomorphism,
in the image of yB:

� the step-by-step construction of β (Subsection 1.7),

� in C, we can construct composites of paths, �nite limits, morphisms induced by them
and, in the �rst case, �nite colimits (trivial),

� the functor y preserves and re�ects commutativity, �nite limits and �nite colimits
(Theorem 2.1).

One then concludes by Lemma 1.4.
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3 Preliminaries for the proof of the stability theorem

In this section we recall some well-known concepts and facts and also �x notation as a
preparation for the proof of the stability theorem.

3.1 2-categorical notation

Functors between categories are represented by a single arrow as in M : A → B. The
composite of functors M : A→ B and N : B→ C is denoted by N ◦M . Natural transfor-
mations are represented by double arrows as in m : M ⇒ M ′. The vertical composite of
m : M ⇒M ′ and m′ : M ′ ⇒M ′′ is denoted by m′ ◦m. The horizontal composite of m and
n in a display

A
M

&&

M ′

88m�� B
N

&&

N ′

88n�� C

is denoted by n •m : N ◦M ⇒ N ′ ◦M ′; recall that it is de�ned by

(n •m)A = nM ′(A) ◦N(mA) = N ′(mA) ◦ nM(A)

for each object A of A. As usual, for the sake of brevity, 1N •m is abbreviated as N •m and
n • 1M is abbreviated as n •M . The `middle interchange law' says that given a diagram

A

M

""

M ′ //

m��

M ′′

<<m′��
B

N

""

N ′ //

n��

N ′′

<<n′��
C

of functors and natural transformations, the equality

(n′ ◦ n) • (m′ ◦m) = (n′ •m′) ◦ (n •m)

holds. We can represent identities involving vertical and horizontal composition of natural
transformations as `pasting identities' using the symbol `≡' between the corresponding
diagrams. For example, the pasting representation of the previous identity is:

A

M

##

M ′′

;;
m′◦m
��

B

N

##

N ′′

;;
n′◦n
��

C ≡ A

N◦M

##

N ′◦M ′ //

n•m
��

N ′′◦M ′′

;;

n′•m′��

C

3.2 The category 1

We write 1 for the single-morphism category. For a category A, by !A we denote the unique
functor A → 1. Since this functor is uniquely determined by its domain and codomain,
when both of these are displayed in a diagram, we do not include the label `!A' for the
corresponding arrow. Furthermore, we do not distinguish between an object A ∈ A and
the functor 1→ A which maps the unique morphism of 1 to the identity morphism of A.
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3.3 Cones

Given a functor M : A→ B and an object B ∈ B, we view a cone over M , with vertex B,
as a natural transformation

1
B

��

A
M

//

??

��
B.

Given two cones b1 : B1◦!A ⇒ M and b2 : B2◦!A ⇒ M over M , a morphism of cones
m : b1 → b2 is a morphism m : B1 → B2 in B such that for the corresponding natural
transformation m : B1 ⇒ B2, the pasting identity

1
B2

��

B1

��

{� m

A
M

//

??

�� b2

B
≡

1
B1

��

A
M

//

??

�� b1

B

holds. A limiting cone over a functor M is then a cone

1

limM

��

A
M

//

??

�� p
M

B

overM such that for any other cone b overM , there is a unique morphism of cones b→ pM .

3.4 Comma categories

Given a functor M : A → B and an object B of B, the usual comma category (B ↓ M)
comes equipped with the data

(B ↓M)

B↓M

��

//

�� (B,M)

1

B

��

A
M

// B

which is universal among such data: for any triple (X, X, b)

X

X

��

//

{� b

1

B

��

A
M
// B

there exists a unique functor U : X → (B ↓ M) such that B↓M ◦ U = X and the pasting
identity

(B ↓M)

B↓M

��

//

�� (B,M)

1

B

��

X
=

X
//

U

;;

A
M

// B

≡

X

X

��

//

{� b

1

B

��

A
M
// B
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holds, and furthermore, for any two functors U, V : X → (B ↓ M) and a natural transfor-
mation n : B↓M ◦ U ⇒ B↓M ◦ V such that

(M • n) ◦ ((B,M) • U) = (B,M) • V,

there exists a unique natural transformation m : U ⇒ V such that

B↓M •m = n.

The second part of the universal property implies that B↓M is faithful and if n : B↓M ◦U ⇒
B↓M ◦ V is a natural isomorphism, then so is m in the above notation.

3.5 Pullbacks of functors are strong

Given a pullback of functors,

P M ′ //

N ′

��

pb

B
N
��

A
M
// D

for any two functors U, V : X → P and natural transformations n : N ′ ◦ U ⇒ N ′ ◦ V and
m : M ′ ◦ U ⇒M ′ ◦ V satisfying

M • n = N •m,

there exists a unique natural transformation q : U ⇒ V such that

N ′ • q = n and M ′ • q = m.

Following the terminology in [58], we say that such pullbacks are strong. This property
implies in particular that if n and m are natural isomorphisms in the above notation, then
so is q.

3.6 Pro-completion and the evaluation functors

One can extend Theorem 2.1 with the following properties of C̃:

Theorem 3.1. [5, 40] For any �nitely complete small category C, we have:

(d) In C̃, co�ltered limits commute with limits and �nite colimits.

(e) The cone (P, y) over the functor y ◦ P ↓y is a limiting cone, for each object P ∈ C̃.

(P ↓ y)

P ↓y

��

//

~� (P,y)

1

P

��

C y
// C̃

Let Z be an arbitrary sketch and W a sketch with one object, no arrows and no
conditions. Objects Z in Z correspond bijectively to morphisms of sketches Z : W → Z.
Given a �nitely complete small category C, the corresponding functors ZC : ZC→ C and
ZC̃ : ZC̃ → C̃ are the usual `evaluation functors' at the object Z, where we identi�ed the

category WC with C and the category WC̃ with C̃. By Theorems 2.1(a) and 3.1(d), the
category ZC̃ has co�ltered limits and they can be computed component-wise. This implies
that the family (ZC̃)Z∈Z of evaluation functors preserves and jointly re�ects co�ltered
limits.
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3.7 Pro-completion and Kan extensions

If µ : V → Z represents a morphism of sketches and if C is still a �nitely complete small
category, the diagram

ZC
µC

��

yZ // ZC̃
µC̃
��

VC yV
// VC̃

obviously commutes. When V and Z are underlying sketches of �nite categories, VC and
ZC become the usual functor categories and via point-wise (right) Kan extension along µ,
the functors µC and µC̃ both obtain right adjoints. Moreover, since y preserves �nite
limits, the Beck-Chevalley condition holds for the above square. In fact, since y is also
injective on objects and faithful, once a right adjoint µ′C for µC is chosen, we can choose a
right adjoint µ′

C̃
for µC̃ in such a way that the Beck-Chevalley condition holds strictly. In

other words, yZ ◦ µ′C = µ′
C̃
◦ yV and when y and e denote the unit and the counit for the

adjunction µC a µ′C, while y′ and e′ for the adjunction µC̃ a µ
′
C̃
, we have: yZ • y = y′ • yZ

and yV • e = e′ • yV . If in addition, as a functor between categories, µ is fully faithful and
injective on objects, we can choose these adjunctions in such a way that counits for both
adjunctions are identity natural transformations, and so the right adjoints µ′C and µ′

C̃
are

at the same time right inverses of µC and µC̃ respectively.
If µ : V → Z is any morphism between underlying sketches of �nite categories, if V ′ is

formed from V by adding a set X1 of commutativity conditions to V, if Z ′ is obtained by
adding to Z a set X2 of commutativity conditions containing the images under µ of those
in X1 and if ν : V ′ → Z ′ is the induced morphism of sketches, we can still construct right
adjoints to νC and νC̃ which satisfy the Beck-Chevalley condition strictly. Moreover, if µ is
fully faithful and injective on objects as a functor and if X2 only contains the images under
µ of the elements of X1, we can again choose these adjunctions in such a way that both
counits are identity natural transformations. To see this, it is enough to use the above
arguments where we replace the �nite categories inducing V and Z by their quotients under
X1 and X2 respectively.

3.8 Removing convergence conditions from a sketch

For a sketch Z, by ιZ : Z∗ → Z we denote the inclusion of the subsketch Z∗ of Z obtained
from Z by removing all convergence conditions in Z. Furthermore, for a category C, the
values of the functor ιZC : ZC → Z∗C will be written as ιZC (S) = S∗ for Z-structures, and
similarly, ιZC (m) = m∗ for morphisms.

4 Proof of the stability theorem

In this section we prove Theorem 2.2. The proof is organized in 29 steps, excluding the
following proof outline, which we have included by referee's suggestion.

Step 0. Outline of the proof

Lemma 1.2 reduces the proof of the theorem to a functorial construction of HG ∈ BC̃, from
G ∈ AαyF C̃, such that there is an isomorphism HG ◦ β ∼= G natural in G. In less technical
language, for a given X -structure F in X , we want to naturally extend each A-extension
G of yF in C̃, to a B-structure HG in C̃. In Step 24 of the proof, we will obtain HG
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as a co�ltered limit of similar extensions yH of A-extensions yK of yF , which we know
exist by the assumption that α `F β and the fact that the (restricted) Yoneda embedding
y : C→ C̃ preserves �nite limits and all colimits.

X A B

X A B X A B

yF G HG

yF yKi yHi yF yKj yHj

The question is, where can we get the K-s from? As the diagram above suggests, we could
get them by a similar representation of G as a co�ltered limit, which is done in Step 22.
This representation goes via an analogous representation of G∗.

X∗
A∗

yK ′

yF∗ G∗

A∗
X∗

X A

yF G

X
yF yK

A

‖

That G∗ can be presented as a co�ltered limit of A∗-structures of the form yK ′ for some
K ′ ∈ A∗C is the set-base case of the uniformity lemma from [35], whose proof is incorpo-
rated in our Steps 20�22, where we make a direct passage to G (hence establishing a more
general form of the uniformity lemma). What allows this passage is a universal construc-
tion carried out in Steps 5�19. The steps preceding those are essentially for introducing
necessary notation. Finally, in Steps 25�26 the construction of HG is shown to be functo-
rial, in Steps 27�28 we establish an isomorphism HG ◦ β ∼= G and in the last Step 29 we
prove its naturality, concluding the proof.

Step 1. The pentagon of sketches

Consider an X -sequent X α // A β
// B as in Theorem 2.2. We will need the following

subsketches of A and corresponding subsketch inclusion morphisms between them,

A

A∗

ιAbb

X

α

FF

X∗

γ

OO

X∗

ιX

WW

δ

==

(2)
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where X∗ denotes the extension of X∗ within A∗ which attaches to X∗ all arrows of A∗
between objects that lie in X∗, and also inherits from A∗ all commutativity conditions
involving these arrows. The diagram above commutes, as all morphisms are subsketch
inclusions.

Step 2. The functor yα,FA

Let C be as in Theorem 2.2. Let F be an X -structure in C. Then yF is an X -structure
in C̃. Suppose there is a functorial veri�cation of α ` β for F . We will need the following
functor induced between the two lateral pullbacks, which are chosen in such a way that
the `J' functors are subcategory inclusions:

AαFC

pb

��

JαF

!!

yα,FA //

=

AαyF C̃

��

JαyF

||

pb

AC

=

yA //

αC

��

AC̃
αC̃

��

XC yX
// X C̃

1

F

<<

=

1

yF

cc

(3)

Step 3. Employing Lemma 1.2

In view of Lemma 1.2, to prove that there is a functorial veri�cation of α ` β for yF , it
su�ces to functorially construct for each G ∈ AαyF C̃ an HG ∈ BC̃ with an isomorphism
βC̃(HG) ∼= G natural in G.

Step 4. The functor L

For this, we �rst need some preliminary material. In particular, we need to show that for
each G ∈ AαyF C̃, the functor L : (G ↓ yα,FA )→ (G∗ ↓ yA∗) which arises from the diagram

(G ↓ yα,FA )

��

G
↓yα,FA %%

L //

=

(G∗ ↓ yA∗)

G
↓yA∗
∗zz

��

AαFC

=

JαF //

yα,FA
��

AC

=yA

��

ιAC // A∗C

yA∗

��

V^
(G∗,yA∗ )

AαyF C̃ JαyF

//

AI(G,yα,FA )

AC̃
ιA
C̃

// A∗C̃

1

G

99

=

1

G∗

dd

(4)

by the universal property of the comma category on the right, has a right adjoint with unit
of adjunction being an isomorphism. Steps 5 to 19 are devoted to the construction of this
right adjoint.
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Step 5. The structure F∗

Since y is fully faithful, preserves �nite limits and colimits and is injective on objects, and
since δ : X∗ → X∗ is bijective on objects, the bottom right square in the diagram

1

=

=F∗
!!

F

��

G // AC̃
ιA
C̃ // A∗C̃

γC̃
��

X∗C
pb

yX∗ //

δC
��

X∗C̃
δC̃
��

XC
ιXC

// X∗C yX∗
// X∗C̃

(5)

is a pullback. Since the diagram of solid arrows commutes, we get the dashed arrow keeping
the diagram commute.

Step 6. The natural transformation f

Since yX∗ is full and faithful, we get a unique natural transformation f in the left square
below ful�lling the identity

(G∗ ↓ yA∗)
G
↓yA∗
∗ //

��

A∗C

=

γC

��

yA∗ // A∗C̃

γC̃

��

1

=
G∗

��

F∗

// X∗C

yX∗
!!

@Hf

A∗C̃ γC̃
// X∗C̃

≡

(G∗ ↓ yA∗)
G
↓yA∗
∗ //

��

A∗C
yA∗ //

yA∗

��
=

A∗C̃

γC̃

��

1
G∗

//

G∗

��

=

A∗C̃

γC̃
""

@H(G∗,yA∗ )

A∗C̃ γC̃
// X∗C̃.

(6)

Step 7. The functor γ′C and the natural transformation u

Since A∗ is the underlying sketch of a �nite category further equipped with the commuta-
tivity conditions from X∗ and X∗ is a full and regular subsketch of A∗, the functor γC has
a right-adjoint-right-inverse γ′C, with counit of adjunction being an identity natural trans-
formation (see Subsection 3.7). Let u : 1A∗C ⇒ γ′C ◦ γC denote the unit of this adjunction.
Then, the triangular identities give us

γC • u = 1γC (7)

and
u • γ′C = 1γ′C . (8)

Step 8. The functor γ′
C̃
and the natural transformation v

Moreover, as explained in Subsection 3.7, we can construct a right-adjoint-right-inverse γ′
C̃

of γC̃, with counit of adjunction being an identity and unit denoted by v : 1A∗C̃ ⇒ γ′
C̃
◦ γC̃
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and such that the diagram

A∗C
yA∗ // A∗C̃

X∗C yX∗

//

γ′C

OO

X∗C̃

γ′
C̃

OO

(9)

commutes and
yA∗ • u = v • yA∗ . (10)

The triangular identities give
γC̃ • v = 1γC̃ (11)

and
v • γ′C̃ = 1γ′

C̃
.

Step 9. The functor S and the natural transformations s1 and s2

Since A∗C has �nite limits, we can consider the following pullback of natural transforma-
tions:

S

s1

{�

s2

�#

pbγ′C ◦ F∗◦ !(G∗↓yA∗ )

γ′C•f �#

G
↓yA∗
∗

u•G
↓yA∗
∗{�

γ′C ◦ γC ◦G
↓yA∗
∗

(12)

Since γC preserves �nite limits and in view of (7), composing the above pullback with γC
results in the pullback

γC ◦ S
γC•s1

{�

γC•s2

�#

pbF∗◦ !(G∗↓yA∗ )

f
�#

γC ◦G
↓yA∗
∗

γC ◦G
↓yA∗
∗

and hence γC • s1 is a natural isomorphism. Using Lemma 1.1 for the isomorphism γC • s1
evaluated at any object of (G∗ ↓ yA∗), we could rede�ne pullback (12) so that γC • s1 is an
identity natural transformation, i.e.,

γC • s1 = 1γC◦S . (13)

Thus, without loss of generality, we assume γC • s2 = f.
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Step 10. The natural transformation s

The fact that y preserves �nite limits also gives that composing the pullback (12) with yA∗
results in a pullback. In view of (6), (9) and (10), this pullback can be computed to be the
bottom square in the following diagram:

G∗◦ !(G∗↓yA∗ )

s

��v•(G∗◦!(G∗↓yA∗ ))


�

(G∗,yA∗ )

	�

yA∗ ◦ S

yA∗•s1

{�

yA∗•s2

�#

pbγ′
C̃
◦ γC̃ ◦G∗◦ !(G∗↓yA∗ )

(γ′
C̃
◦γC̃)•(G∗,yA∗ )

�#

yA∗ ◦G
↓yA∗
∗

v•(yA∗◦G
↓yA∗
∗ )

{�

γ′
C̃
◦ γC̃ ◦ yA∗ ◦G

↓yA∗
∗

(14)

Since the outer diagram commutes, we obtain an induced natural transformation s making
the two triangular diagrams above commute. Since γC̃ • v = 1γC̃ (11) and (γC̃ ◦ yA∗) • s1 =
1yX∗◦γC◦S

(by (13)), we have in particular that

γC̃ • s = 1yX∗◦γC◦S
. (15)

Step 11. The functor T

On one hand, the top rectangle in the diagram

(G∗ ↓ yA∗)
T //

S

$$

((
AαFC

JαF
��

//

pb

1

F

��

AC

pbιAC
��

αC // XC
ιXC
��

=

A∗C γC
// X∗C

δC
// X∗C

(16)

is a pullback by de�nition of AαFC. Moreover, since α is unconditional of �nite kind,
the convergence conditions of A already lie in X . Therefore, each A∗-structure in C,
whose restriction as an X∗-structure extends as an X -structure, can be extended to an A-
structure, showing that the bottom rectangle is also a pullback. On the other hand, by (5)
and (13), the outer diagram commutes. This gives rise to the functor T which makes the
left triangular diagram commute.
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Step 12. The natural transformation t

Since the two rectangles in the diagram

(G∗ ↓ yA∗)
yα,FA ◦T

%%
G◦!(G∗↓yA∗ )

%%

G∗◦!(G∗↓yA∗ )

&&

s
HP

4<

AαyF C̃ JαyF

//

��

pb

AC̃
ιA
C̃

//

αC̃

��

pb

A∗C̃
γC̃
��

yA∗◦S

$$

X∗C̃
δC̃
��

1
yF

//
**

))

X C̃
ιX
C̃

// X∗C̃

are strong pullbacks, in view of (15), there is a unique natural transformation t such that

(G∗ ↓ yA∗)
T //

��

AαFC

=

JαF //

yα,FA
��

AC

=

ιAC //

yA

��

A∗C

yA∗

��

1
G

// AαyF C̃

AIt

JαyF

// AC̃
ιA
C̃

// A∗C̃

≡

(G∗ ↓ yA∗)
S //

��

A∗C

yA∗

��

1
G∗

// A∗C̃.

AIs (17)

Step 13. The functor R

Now, by the universal property of the comma construction, we have a functorR as displayed
here:

(G ↓ yα,FA )

G
↓yα,FA

��

//

�� (G,yα,FA )

1

G

��

(G∗ ↓ yA∗)
=

T
//

R

99

AαFC
yα,FA

// AαyF C̃

≡

(G∗ ↓ yA∗)

T

��

//

�	 t

1

G

��

AαFC
yα,FA

// AαyF C̃

(18)

We are now to show that this functor is a right adjoint of L (few more steps will be needed
for this). We will proceed as follows. First we are going to build candidates for the unit and
the counit of adjunction, and then we are going to show that they satisfy the triangular
identities required for an adjunction.
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Step 14. f • L is an identity

To build the candidate for the unit, we �rst go back to the pullback (12) and compose it
with L to get the following pullback.

S ◦ L
s1•L

{�

s2•L

�#

pbγ′C ◦ F∗◦ !
(G↓yα,FA )

γ′C•f•L �#

G
↓yA∗
∗ ◦ L

u•(G
↓yA∗
∗ ◦L){�

γ′C ◦ γC ◦G
↓yA∗
∗ ◦ L

We will now show that f • L is an identity natural transformation, from which we will be
able to conclude that γ′C • f •L is an identity and therefore s2 •L is an isomorphism. Since
yX∗ is faithful, in view of (6), it su�ces to show that γC̃ • (G∗, yA∗) • L is an identity. In
view of (2) and (4) and since δC̃ is faithful, this reduces to showing that

(δC̃ ◦ γC̃) • (G∗, yA∗) • L = (ιXC̃ ◦ αC̃ ◦ J
α
yF ) • (G, yα,FA )

is an identity. Indeed, in view of (3),

(ιXC̃ ◦ αC̃ ◦ J
α
yF ) • (G, yα,FA ) = (ιXC̃ ◦ (yF )◦ !AαyF C̃

) • (G, yα,FA )

= (ιXC̃ ◦ (yF )) • 1!
(G↓yα,FA )

= 1ιX
C̃
◦(yF )◦!

(G↓yα,FA )

.

So the above pullback becomes the following one.

S ◦ L
s1•L

{�

s2•L

�#

pbγ′C ◦ F∗◦ !
(G↓yα,FA )

G
↓yA∗
∗ ◦ L

u•(G
↓yA∗
∗ ◦L){�

γ′C ◦ γC ◦G
↓yA∗
∗ ◦ L

(19)
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Step 15. The natural isomorphism w

Since (δC ◦ γC) • s2 • L = δC • f • L is an identity natural transformation and the two
rectangles in the diagram

(G ↓ yα,FA )

$$

G
↓yα,FA ◦R◦L

G
↓yα,FA %%

G
↓yA∗
∗ ◦L

&&

(s2•L)−1

HP

5=

AαFC JαF

//

��

pb

AC
ιAC

//

αC

��

pb

A∗C

δC◦γC

��

S◦L

""

1
F

//
++

)) XC
ιXC

// X∗C

are strong pullbacks, there exists a unique natural isomorphism w such that

(G ↓ yα,FA )
L // (G∗ ↓ yA∗)

R
��

=

(G∗ ↓ yA∗)

S

��

(G ↓ yα,FA )

G
↓yα,FA
��

(G ↓ yα,FA )

L
��

G
↓yα,FA

// AαFC

:Bw

ιAC ◦J
α
F

''

(G∗ ↓ yA∗)
=

G
↓yA∗
∗

// A∗C

≡

(G ↓ yα,FA )
L //

L

��

(G∗ ↓ yA∗)

S

��

(G∗ ↓ yA∗)
G
↓yA∗
∗

// A∗C.

BJ(s2•L)−1

(20)

Step 16. The natural unit y

We want to lift w to a natural isomorphism y : 1
(G↓yα,FA )

⇒ R◦L, which will be the required

candidate for the unit of the adjunction. We will do this by using the universal property
of the comma construction

(G ↓ yα,FA )

G
↓yα,FA

��

//

�� (G,yα,FA )

1

G

��

AαFC
yα,FA

// AαyF C̃.

To be able to apply the universal property to produce such lift of w, we must show

(yα,FA •w) ◦ (G, yα,FA ) = (G, yα,FA ) • (R ◦ L).

Since ιA
C̃
◦ JαyF is faithful, it is su�cient to show that the two expressions of the equality

above are equal after being composed with this functor. By the interchange law,

(ιAC̃ ◦ J
α
yF ) • ((yα,FA •w) ◦ (G, yα,FA )) = ((ιAC̃ ◦ J

α
yF ◦ y

α,F
A ) •w) ◦ ((ιAC̃ ◦ J

α
yF ) • (G, yα,FA )).
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By the top trapezium in (3), the middle-right square in (4), and in view of (20), we have:

(ιAC̃ ◦ J
α
yF ◦ y

α,F
A ) •w = yA∗ • (s2 • L)−1.

By commutativity of (4) and the top right triangular diagram in (14), we have:

(ιAC̃ ◦ J
α
yF ) • (G, yα,FA ) = ((yA∗ • s2) ◦ s) • L = (yA∗ • s2 • L) ◦ (s • L).

Putting it all together and applying (17) and (18), we get

(ιAC̃ ◦ J
α
yF ) • ((yα,FA •w) ◦ (G, yα,FA )) = (yA∗ • (s2 • L)−1) ◦ (yA∗ • s2 • L) ◦ (s • L)

= s • L
= (ιAC̃ ◦ J

α
yF ) • t • L

= (ιAC̃ ◦ J
α
yF ) • (G, yα,FA ) • (R ◦ L),

as desired. So there exists a unique natural isomorphism y : 1
(G↓yα,FA )

⇒ R ◦ L such that

G↓y
α,F
A • y = w. (21)

Step 17. The natural counit e

The next step is to construct a candidate for the counit of adjunction L a R. We will do
this using the universal property of the comma construction

(G∗ ↓ yA∗)

G
↓yA∗
∗

��

//

�� (G∗,yA∗ )

1

G∗

��

A∗C yA∗
// A∗C̃.

Notice that by commutativity the top trapezium in (4), and by (18) and (16), we have

G
↓yA∗
∗ ◦ L ◦R = S. (22)

Consider then the natural transformation s2 : G
↓yA∗
∗ ◦ L ◦ R ⇒ G

↓yA∗
∗ . To lift this to a

natural transformation L ◦R⇒ 1(G∗↓yA∗ ), we must show

(yA∗ • s2) ◦ ((G∗, yA∗) • (L ◦R)) = (G∗, yA∗).

This equality follows directly by �rst applying commutativity of (4), and then (18) followed
by (17), and �nally, applying commutativity of the right triangular diagram in (14). We
thus obtain a unique natural transformation e : L ◦R⇒ 1(G∗↓yA∗ ) such that

G
↓yA∗
∗ • e = s2. (23)
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Step 18. First triangular identity

We now begin proving the triangular identities. To prove (e • L) ◦ (L • y) = 1L, it is

su�cient, by faithfulness of G
↓yA∗
∗ , to prove

G
↓yA∗
∗ • ((e • L) ◦ (L • y)) = 1

G
↓yA∗
∗ ◦L

.

Indeed, we have:

G
↓yA∗
∗ • ((e • L) ◦ (L • y)) = (G

↓yA∗
∗ • e • L) ◦ (G

↓yA∗
∗ • L • y) [middle interchange]

= (s2 • L) ◦ (G
↓yA∗
∗ • L • y) [by (23)]

= (s2 • L) ◦ (s2 • L)−1 [by (4), (21), (20)]

= 1
G
↓yA∗
∗ ◦L

.

Step 19. Second triangular identity

Now, since y is an isomorphism, and the �rst triangular identity is already established, to
get the second triangular identity (R • e)◦ (y•R) = 1R it is su�cient to prove (L◦R)• e =

e • (L ◦R). Since G
↓yA∗
∗ is faithful and s1, s2 are pullback projections and hence are jointly

monomorphic, it is further su�cient to establish the following two identities:

s1 ◦ ((G
↓yA∗
∗ ◦ L ◦R) • e) = s1 ◦ (G

↓yA∗
∗ • e • (L ◦R)),

s2 ◦ ((G
↓yA∗
∗ ◦ L ◦R) • e) = s2 ◦ (G

↓yA∗
∗ • e • (L ◦R)).

We begin with the �rst one:

s1 ◦ ((G
↓yA∗
∗ ◦ L ◦R) • e) = s1 ◦ (S • e) [by (22)]

= s1 • e
= ((γ′C ◦ F∗◦ !(G∗↓yA∗ )) • e) ◦ (s1 • (L ◦R))

= s1 • (L ◦R) = (s1 • L) •R

= (u • (G
↓yA∗
∗ ◦ L ◦R)) ◦ (s2 • (L ◦R)) [by (19)]

= (u • S) ◦ (s2 • (L ◦R)) [by (22)]

= (γ′C • 1γC◦S) ◦ (u • S) ◦ (s2 • (L ◦R))

= ((γ′C ◦ γC) • s1) ◦ (u • S) ◦ (s2 • (L ◦R)) [by (13)]

= (u • s1) ◦ (s2 • (L ◦R))

= (u • (γ′C ◦ F∗◦ !(G∗↓yA∗ ))) ◦ s1 ◦ (s2 • (L ◦R))

= ((u • γ′C) • (F∗◦ !(G∗↓yA∗ ))) ◦ s1 ◦ (s2 • (L ◦R))

= s1 ◦ (s2 • (L ◦R)) [by (8)]

= s1 ◦ (G
↓yA∗
∗ • e • (L ◦R)) [by (23)]

The second identity is easier to obtain:

s2 ◦ ((G
↓yA∗
∗ ◦ L ◦R) • e) = (G

↓yA∗
∗ • e) ◦ ((G

↓yA∗
∗ ◦ L ◦R) • e) [by (23)]

= G
↓yA∗
∗ • e • e

= (G
↓yA∗
∗ • e) ◦ (G

↓yA∗
∗ • e • (L ◦R))

= s2 ◦ (G
↓yA∗
∗ • e • (L ◦R)) [by (23)]
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Now that we have constructed the adjunction L a R, whose unit is an isomorphism, we
will make few more remarks needed to construct the desired B-structure HG.

Step 20. (G ↓ yα,FA ) is a co�ltered category

Since C has �nite limits andA∗ is the underlying sketch of a �nite category further equipped
with some commutativity conditions, also A∗C and A∗C̃ have �nite limits, computed
component-wise. Moreover, the functor

yA∗ : A∗C→ A∗C̃

preserves them. This implies that (G∗ ↓ yA∗) has �nite limits. In view of the adjunction
L a R, with unit being an isomorphism, this implies that (G ↓ yα,FA ) also has �nite limits.

Since (G ↓ yα,FA ) is in addition a small category, we get that it is a co�ltered category.

Step 21. The functors LA

Now consider an object A in A and the associated functor LA arising in the following
diagram thanks to the universal property of the comma category on the right.

(G∗ ↓ yA∗)

��

G
↓yA∗
∗ %%

LA //

=

(G(A) ↓ y)

G(A)↓y
zz

��

A∗C

yA∗

��

=

AC // C

y

��

W_
(G(A),y)

A∗C̃
AC̃

//

AI(G∗,yA∗ )

=

C̃

1

G∗

99

1

G(A)

dd

Since the middle square above satis�es the Beck-Chevalley condition relative to the right
adjoints of the horizontal functors (see Subsection 3.7), we can conclude that LA has a
right adjoint.

Step 22. JαyF • (G, y
α,F
A ) is a limiting cone

For an object A ∈ A, consider the commutative diagram

(G ↓ yα,FA )

��

LA◦L //

G
↓yα,FA

��

(G(A) ↓ y)

G(A)↓y

��
=

AαFC

yα,FA
��

C

y

��

AαyF C̃

JαyF
��

AC̃
AC̃

//

=

C̃.
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By Theorem 3.1(e), (G(A), y) is a limiting cone of the composite of functors in the right
column of the above diagram. Since the top functor has a right adjoint, this implies that

(G(A), y) • (LA ◦ L) = (AC̃ ◦ J
α
yF ) • (G, yα,FA )

is a limiting cone of the diagonal functor. Since (G ↓ yα,FA ) is a co�ltered category, we can
conclude that

JαyF • (G, yα,FA ) (24)

is a limiting cone of the composite of functors in the left column. The vertex of this limiting
cone is the object G ∈ AC̃. We have now all the ingredients to prove that there exists a
B-structure HG in C̃ such that HG ◦ β is isomorphic to G in AC̃, and moreover, HG is
functorial and the isomorphism is natural in G.

Step 23. The functor β′F

Since there is a functorial veri�cation of α ` β for F , we know that βαF : BβαF C → AαFC
admits a right inverse. Let us denote it by β′F .

Step 24. The B-structure HG and the natural transformation pG

We then have the following commutative diagram, where at the bottom, A represents an
arbitrary object of A:

(G ↓ yα,FA )

G
↓yα,FA
��

CG

&&

=

(G ↓ yα,FA )

=
G
↓yα,FA

��

AαFC

β′F
��

1Aα
F

C

&&=

BβαF C

=

JβαF
��

βαF

// AαFC

yα,FA
��

BC
yB

��

AαyF C̃

JαyF
��

BC̃
βC̃ //

β(A)C̃
��

=

AC̃
AC̃
��

C̃ C̃

Let HG be the co�ltered limit of CG in the diagram above, with pG denoting the limiting
cone. We will show that the construction HG is functorial in G.
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Step 25. The functor m#

A morphism m : G → G′ in AαyF C̃ gives rise to a functor m# : (G′ ↓ yα,FA ) → (G ↓ yα,FA ),
which is uniquely determined by the following pasting identity.

(G ↓ yα,FA )

G
↓yα,FA

��

//

�� (G,yα,FA )

1

G

��

(G′ ↓ yα,FA )

=

G
′↓yα,FA

//

m#

99

AαFC
yα,FA

// AαyF C̃

≡

(G′ ↓ yα,FA )

G
′↓yα,FA

��

//

�� (G′,yα,FA )

1

G′

��

1

G

~~

[c
m

AαFC
yα,FA

// AαyF C̃

(25)

Step 26. The morphism Hm

This functor gives rise, in turn, to a morphism Hm : HG → HG′ which is uniquely deter-
mined by the following pasting identity.

1
HG′

��

HG

��

{� Hm

(G′ ↓ yα,FA )
CG′

//

;;

��
pG′

BC̃

≡

1
HG

��

(G′ ↓ yα,FA )
m#
// (G ↓ yα,FA )

CG
//

::

��
pG

BC̃

(26)
This establishes functoriality of HG in G.

Step 27. βC̃ • pG is a limiting cone

It remains to construct an isomorphism iG : HG ◦ β ∼= G natural in G. For this, we �rst
claim that for each G, the cone βC̃ • pG is a limiting cone. Since (G ↓ yα,FA ) is a co�ltered
category, and the evaluation functors AC̃ jointly re�ect co�ltered limits, it is su�cient to
show that each cone

AC̃ • (βC̃ • pG) = (AC̃ ◦ βC̃) • pG = β(A)C̃ • pG

is a limiting cone. This is indeed the case since the evaluation functors β(A)C̃ preserve
co�ltered limits.

Step 28. The isomorphism iG

Now the limiting cone βC̃ • pG is over the same functor as the limiting cone (24). So there
must be an isomorphism iG : HG ◦ β = βC̃(HG) ∼= G uniquely determined by the identity

(JαyF • (G, yα,FA )) ◦ (iG•!
(G↓yα,FA )

) = βC̃ • pG. (27)

Step 29. The naturality of iG

For the naturality of this isomorphism, we must show that the diagram

HG ◦ β iG //

Hm•β
��

G

m

��

HG′ ◦ β
iG
′
// G′
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commutes for each morphism m : G→ G′ in AαyF C̃. For this it su�ces to show that

(J • (G′, yα,FA )) ◦ ((iG
′ ◦ (Hm • β))•!G′) = (J • (G′, yα,FA )) ◦ ((m ◦ iG)•!G′),

where J = JαyF and !G
′

=!
(G′↓yα,FA )

(similarly, in what follows, !G =!
(G↓yα,FA )

). Indeed, we

have:

(J • (G′, yα,FA )) ◦ ((iG
′ ◦ (Hm • β))•!G′) = (J • (G′, yα,FA )) ◦ (iG

′•!G′) ◦ ((Hm • β)•!G′)

= (βC̃ • pG′) ◦ ((Hm • β)•!G′) [by (27) for G′]

= (βC̃ • pG′) ◦ (βC̃ •Hm•!G
′
)

= βC̃ • (pG′ ◦ (Hm•!G
′
))

= βC̃ • pG •m
# [by (26)]

= ((J • (G, yα,FA )) ◦ (iG•!G)) •m# [by (27)]

= (J • (G, yα,FA ) •m#) ◦ (iG•!G′)

= (J • ((G′, yα,FA ) ◦ (m•!G′))) ◦ (iG•!G′) [by (25)]

= (J • (G′, yα,FA )) ◦ (J •m•!G′) ◦ (iG•!G′)

= (J • (G′, yα,FA )) ◦ (((J •m) ◦ iG)•!G′)

= (J • (G′, yα,FA )) ◦ ((m ◦ iG)•!G′)

With this the proof of the stability theorem is complete.

5 Coherence

In this section we add a technical remark to Theorem 2.2 that, in fact, under the conditions
of the theorem, the right inverse of βαyF can be chosen so that it agrees with the given right
inverse of βαF in the following sense. Using the notation from the proof above, let us

consider the factorisation yβα,FB making the diagram

BβαF C

βαF

��

yβα,FB //

JβαF

!!

pb

BβαyF C̃

βαyF

��

JβαyF
||

pbBC yB //

βC

��

=

=

BC̃
βC̃

��

AαFC
JαF //

��

pb

AC yA //

αC

��

=

AC̃

αC̃

��

AαyF C̃
JαyF
oo

��

pb

XC yX
//

=

X C̃

1

F

;;

1

yF

cc

(28)
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commutative, where the J functors are subcategory inclusions. Let us notice that the
rectangle

BβαF C

βαF

��

yβα,FB // BβαyF C̃

βαyF
��

AαFC
yα,FA

// AαyF C̃

is also commutative. Given a right inverse β′F of βαF , we showed in the above proof the
existence of a right inverse β′yF of βαyF . Let us now prove that these functorial veri�cations
agree (are coherent) with each other; i.e., with an appropriate choice of limits, they make
the rectangle

BβαF C
yβα,FB // BβαyF C̃

AαFC

β′F

OO

yα,FA

// AαyF C̃

β′yF

OO

commutative. For each K ∈ AαFC, the pasting

(K ↓ AαFC) //

K↓A
α
F C

��

�	 (K,AαFC)

1

K

��

AαFC 1Aα
F

C //

1Aα
F

C

��

pb

AαFC

yα,FA

��

AαFC
yα,FA

// AαyF C̃

where (K ↓ AαFC), K↓A
α
FC and (K,AαFC) denote (K ↓ 1AαFC), K

↓1Aα
F

C and (K, 1AαFC)

respectively, is isomorphic to the comma category (yα,FA (K) ↓ yα,FA ) since they satisfy the

same universal property. Let us denote this isomorphism by yisoK : (K ↓ AαFC)→ (yα,FA (K) ↓
yα,FA ). It is uniquely determined by the following pasting identity.

(K ↓ AαFC)

yisoK

��

K↓A
α
F C

��

=

(yα,FA (K) ↓ yα,FA )
yα,FA (K)

↓yα,FA
//

��

AαFC

yα,FA

��

1
yα,FA (K)

// AαyF C̃

AI

(yα,FA (K),yα,FA )

≡

(K ↓ AαFC)
K↓A

α
F C

//

��

AαFC

1Aα
F

C

��

1
K

// AαFC

yα,FA

��

@H (K,AαFC)

AαyF C̃

(29)
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The universal property of the comma category gives rise to a functor I : 1 → (K ↓ AαFC)
uniquely determined by the following pasting identity.

(K ↓ AαFC)

K↓A
α
F C

��

//

�� (K,AαFC)

1

K

��

1

=

K
//

I

;;

AαFC 1Aα
F

C
// AαFC

≡

1

K

��

//

=

1

K

��

AαFC 1Aα
F

C
// AαFC

(30)

Let us now prove that the cone

1

K

  

(K ↓ AαFC)
K↓A

α
F C

//

;;

�� (K,A
α
FC)

AαFC
yB◦JβαF ◦β

′
F

// BC̃

over C
yα,FA (K)

◦ yisoK is a limiting cone. Since I is an initial object in (K ↓ AαFC), this is the

case if and only if the cone

1

K

  

1
I

// (K ↓ AαFC)
K↓A

α
F C

//

;;

�� (K,A
α
FC)

AαFC
yB◦JβαF ◦β

′
F

// BC̃

is a limiting cone. In view of (30), this cone is just the identity over a functor whose domain
is 1, which implies it is a limiting cone. Therefore, since yα,FA is injective on objects, we
can choose, for each K ∈ AαFC, Hyα,FA (K)

to be

H
yα,FA (K)

= (yB ◦ JβαF ◦ β
′
F )(K) = (JβαyF ◦ y

βα,F
B ◦ β′F )(K)

with
p
yα,FA (K)

= (yB ◦ JβαF ◦ β
′
F ) • (K,AαFC) • (yisoK )−1. (31)

Now, with these choices, we would like to show that iy
α,F
A (K) = 1

yα,FA (K)
. In view of the

de�nition of iy
α,F
A (K) from (27), this follows from the equalities:

JαyF • (yα,FA (K), yα,FA )

= JαyF • (yα,FA • (K,AαFC) • (yisoK )−1) [by (29)]

= (JαyF ◦ y
α,F
A ) • (K,AαFC) • (yisoK )−1

= (yA ◦ JαF ) • (K,AαFC) • (yisoK )−1 [by (3)]

= (yA ◦ JαF ◦ βαF ◦ β′F ) • (K,AαFC) • (yisoK )−1

= (βC̃ ◦ yB ◦ J
βα
F ◦ β

′
F ) • (K,AαFC) • (yisoK )−1 [by (28)]

= βC̃ • pyα,FA (K)
[by (31)]
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In view of the proof of Lemma 1.1, iy
α,F
A (K) = 1

yα,FA (K)
implies that

β′yF (yα,FA (K)) = H
yα,FA (K)

= (yβα,FB ◦ β′F )(K).

We still need to prove the identity β′yF ◦ y
α,F
A = yβα,FB ◦ β′F holds on morphisms. So let

n : K → K ′ be any morphism in AαFC. We are required to show

H
yα,FA (n)

= (JβαyF ◦ y
βα,F
B ◦ β′F )(n).

Since yα,FA is faithful and the equalities

yα,FA • (K,AαFC) • ((yisoK )−1 ◦ (yα,FA (n))#)

= (yα,FA • (K,AαFC) • (yisoK )−1) • (yα,FA (n))#

= (yα,FA (K), yα,FA ) • (yα,FA (n))# [by (29)]

= (yα,FA (K ′), yα,FA ) ◦ (yα,FA (n)•!
(yα,FA (K′)↓yα,FA )

) [by (25)]

= (yα,FA • (K ′,AαFC) • (yisoK′)
−1) ◦ (yα,FA (n)•!

(yα,FA (K′)↓yα,FA )
) [by (29) for K ′]

= (yα,FA • (K ′,AαFC) • (yisoK′)
−1) ◦ (yα,FA • n•!

(yα,FA (K′)↓yα,FA )
)

= yα,FA • (((K ′,AαFC) • (yisoK′)
−1) ◦ (n•!

(yα,FA (K′)↓yα,FA )
))

hold, the identity

(K,AαFC) • ((yisoK )−1 ◦ (yα,FA (n))#) = ((K ′,AαFC) • (yisoK′)
−1) ◦ (n•!

(yα,FA (K′)↓yα,FA )
) (32)

holds. In view of

p
yα,FA (K′)

◦ ((JβαyF ◦ y
βα,F
B ◦ β′F )(n)•!

(yα,FA (K′)↓yα,FA )
)

= p
yα,FA (K′)

◦ ((JβαyF ◦ y
βα,F
B ◦ β′F ) • n•!

(yα,FA (K′)↓yα,FA )
)

= p
yα,FA (K′)

◦ ((yB ◦ JβαF ◦ β
′
F ) • n•!

(yα,FA (K′)↓yα,FA )
) [by (28)]

= ((yB ◦ JβαF ◦ β
′
F ) • (K ′,AαFC) • (yisoK′)

−1)

◦ ((yB ◦ JβαF ◦ β
′
F ) • n•!

(yα,FA (K′)↓yα,FA )
) [by (31) for K ′]

= (yB ◦ JβαF ◦ β
′
F ) • (((K ′,AαFC) • (yisoK′)

−1) ◦ (n•!
(yα,FA (K′)↓yα,FA )

))

= (yB ◦ JβαF ◦ β
′
F ) • (K,AαFC) • ((yisoK )−1 ◦ (yα,FA (n))#) [by (32)]

= p
yα,FA (K)

• (yα,FA (n))# [by (31)]

and the de�nition of H
yα,FA (n)

from (26), we have H
yα,FA (n)

= (JβαyF ◦ y
βα,F
B ◦ β′F )(n) as

required. This shows that β′yF ◦ y
α,F
A = yβα,FB ◦ β′F .

6 Concluding remarks

In this section we discuss a few topics for possible future research in the subject of exactness
properties.
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6.1 Exactness varieties of categories

The study of exactness properties share similarities with universal algebra. There, for a
�xed signature, one relates classes of identities expressed using operators from the signa-
ture and classes of algebras satisfying identities. Similarly here, it would be interesting
to investigate the relationship between classes of exactness properties and classes of cate-
gories having exactness properties. In particular, which classes of (say, �nitely complete)
categories are `exactness varieties' of categories in the sense that they include all categories
having all exactness properties in a �xed class of exactness properties, and only those? In
other words, is there an analogue of Birkho� Variety Theorem for exactness properties?

6.2 Essentially algebraic categories

Our stability theorem reinforces the idea, which emerged already in [54, 55, 57], that the
study of exactness properties in the context of �nitely complete categories is intimately
linked with the theory of essentially algebraic categories in the sense of [2, 3]. Indeed, the
dual categories of pro-completions of �nitely complete small categories are nothing but
essentially algebraic categories. Therefore, by iteration of pro-completion with its dual (up
to omitted changes of universes for size issues),

C ↪→ Lex(C,Set)op ↪→ Lex(Lex(C,Set),Set)

we obtain a representation of any �nitely complete category C as a full subcategory of
an essentially algebraic category. Moreover, the embedding functor preserves �nite limits,
�nite colimits and re�ects isomorphisms. So by our stability theorem (applied twice), we
get that, in many cases, working in a �nitely complete category having a certain exactness
property can be reduced to working in an essentially algebraic category having the same
property. The role that essentially algebraic categories play for the study of exactness
properties should be better understood.

6.3 Higher-order exactness properties

In the Introduction, we referred to exactness properties expressed by exactness sequents
de�ned in this paper as `�rst-order' exactness properties. This terminology is suggested
by the fact that in topos theory, the properties of a topos which are usually referred to as
`�rst-order' properties are roughly those which can be expressed by our exactness sequents.
De�nition of higher-order exactness properties and the question of their stability under pro-
completion are to be looked at. There are a number of examples of higher-order exactness
properties not only in classical topos theory, but also in recent developments in categorical
algebra (e.g. those introduced in [10, 17, 48]).

6.4 Exactness properties for Mal'tsev conditions

In universal algebra, a `Mal'tsev condition' on a variety of algebras is a condition which is
equivalent to the existence of certain terms in its algebraic theory satisfying certain term
identities. Some Mal'tsev conditions can be expressed as �rst-order exactness properties
of the corresponding category of algebras (see e.g. [64]). The question here is: given a
Mal'tsev condition on a variety of algebras, can one �nd a �rst-order exactness property
of a category which is equivalent to the given Mal'tsev condition in the restricted case
of varieties of algebras? Experience working with Mal'tsev conditions that are known
to be expressible as �rst-order exactness properties suggests that if a Mal'tsev condition
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involves equations where the same terms occur at di�erent bracket depth, then such a
Mal'tsev condition cannot be expressed as a �rst-order exactness property. In particular,
the following is an open problem: is the Mal'tsev condition of existence of terms of the
algebraic theory of groups expressible as a �rst-order exactness property? Note that the
associativity axiom of the group multiplication has the multiplication term occurring at
two di�erent bracket levels. A related line of research is to identify exactness properties
of an object which describe certain algebraically de�ned members of a variety. A striking
positive result in this area is given in [78, 41], where it is shown that groups can be identi�ed
in the variety of monoids using a �rst-order exactness property.

6.5 Enriched and structured categories

It would be interesting to explore extensions of our stability theorem (and more generally,
the theory of exactness properties) when a category is replaced with another categorical
structure, such as an enriched category or a monoidal category, see e.g. [35, 36]. In fact, the
earlier version of our stability theorem was formulated for algebraically enriched categories
(see [54]). Since algebraic enrichments can themselves be seen as exactness properties, as we
remark at the end of Subsection 1.9, the present formulation of the theorem only slightly
drops generality of the context; aside from the context, the present theorem is actually
signi�cantly more general (for instance, its earlier version concerned exactness properties of
empty structures). Another direction for generalization is considering exactness properties
relative to special classes of morphisms, spans, etc. Sometimes this allows to unify various
features of di�erent exactness properties and generate new examples, see e.g. [21, 44,
47, 56, 77]. In general, a systematic investigation of exactness properties for `structured
categories' should be an interesting direction for research.

6.6 Completions

There are many other types of completions arising in category theory, see e.g. [1, 4, 8, 25,
31, 42, 53, 69, 70, 79]. An interesting question would be to study which exactness properties
are stable under these di�erent completions. Particular instances of such stability results
have been already established in [24, 43, 45, 54, 57]. Even for pro-completion the question
is not yet complete. Indeed, on one hand, one may wonder if the assumption on �nite
limits can be removed from Theorem 2.2 (and thus replacing Lex(C,Set)op by the pro-
completion of C). This question has been raised to us by Johnstone and remains open.
On the other hand, as mentioned at the end of the Introduction, expressing an exactness
property in a suitable way to apply our stability theorem may not be an easy task. This
may be the reason why stability under the pro-completion for some particular exactness
properties is still unknown, e.g. for being a Mal'tsev category, being regular protomodular,
being protomodular, being strongly protomodular [14], and being a Gumm category [16].
Or perhaps, there are counterexamples to show that these properties are not stable under
the pro-completion.
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